
II

AD-A261 043
WL-TR-93-1003

COMMON ADA PROGRAMMING SUPPORT
ENVIRONMENT (APSE) INTERFACE SET (CAIS)
IMPLEMENTATION VALIDATION CAPABILITY (CIVC2)

JAIRO FREYRE
DAVID REMKES
JEFFREY RAGSDALE
SOFTECH, INC.
1300 HERCULES. SUITE 105
HOUSTON TX 77058

JUN 1992

FINAL REPORT FOR 09/02/90-06/15/92

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DTIC
S ELECTE

FEB 2 6 1993

93-04042rllilllllUm

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT PATTERSON AFB OH 45433- 7409

93 2 25 06,0

NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY
PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED
PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY
OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN
ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO
BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING
THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR
PERMISSION TO MANUFACTURE. USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY
WAY BE RELATED THERETO.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

RAICOND szY A VT TIMOTHY G. KEARNS, Maj, USAF or
Program Manager Chief &I

Readiness Technology Group
-. .- ,,,o, iced

Justification

By
Distribution .

CHARLES HIVNUEGER, Chief Availability Codes
System Avionics Divisionc - Avail ad
AVionics Directorate it Special

E-/

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING
LIST. OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE
NOTIFY w.,],.. -,, WRIGHT-PATTERSON AFB, OH 45433- 4 To HELP MAINTAIN
A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REQUIRED BY
SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC
DOCUMENT.

R DForm Approved
REPORT DOCUMENTATION PAGE OMB No o7o4-0188

Puciic reporting ourden tor this collection of information is estimated to average I hour per response. including the time for revewing istructonh. searc.i.g existing data sources.
gatrieriuo and maintaining the data needed, and comoleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection rf o nformatior. including suggestions for reducing this ouroen. to Jvasnington Headouarters Services. Directorate for information Operations and Regorts. 121S Jefferson
Dais Higrav, Suite 1204. Arlington. I'A 22202-4302. and to the Offie of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. OC 20503.

JUN 1992 FINAL 09/02/90--06/15/92

4. TITLE AND SUBTITLE COMMON ADA PROGRAHMING 5U1FFOUT S. FUNDING NUMBERS

ENVIRONMENT (APSE) INTERFACE SET (CAIS) C F33615-87-C-1449
IMPLEMENTATION VALIDATION CAPABILITY (CIVC2) PE 63226

PR 2853

6. AUTHOROJAIRO FREYRE TA 25
DAVID REMKES WU 02
JEFFREY RAGSDALE

'7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SOFTECH, INC. REPORT NUMBER

1300 HERCULES, SUITE 105
HOUSTON TX 77058

9. SPqI,0O•ICS.•I•REC-O]ATE.•E(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

WRIGHT LABORATORY w••I' RBER
AIR FORCE SYSTEMS COMMAND
WL/AAAF, Attn: SZYMANSKI 513-2553947
WRIGHT-PATTERSON AFB OH 45433-7409

11. SLRDAUrT"rT!OPROGRAH OFFICE (SPONSOR)
1211 S. FERN ST
ARLINGTON VA 22202

12a. cKpPRo•f,,POILP1UBDIC.E1RELEASE; DISTRIBUTION IS 12b. DISTRIBUTION CODE

UNLIMITED.

13. ABSTRACT (Maximum 200 words)

THIS REPORT SUMMARIZES THE ACCOMPLISHMENTS AND LESSONS LEARNED FROM PHASE III OF THE
CIVC PROJECT. IT INCLUDES RECOMMENDATIONS IN THE EVENT THE CIVC TECHNOLOGY
IS REINSTATED IN THE FUTURE AND SUGGESTIONS FOR TECHNOLOGY TRANSFER OF VALIDATION
PRODUCTS TO OTHER AREAS OF SOFTWARE DEVELOPMENT.

il 5U%;A6TRtffIL-STD-1838A, VALIDATION, TESTING, ADA 15. NUMBER OF PA2§

FRAMEWORKS, TEST CLASS, TEST CASE, TEST OBJECTIVES _

EXCEPTION PROCESSING, CAIS PRAGMATICS 16. PRICE CODE

• -.A ,T-:'_,SiHCATiON D •3. SECURII -CLAý&iCATION 1 19. SECURITY CLASSIFICATICN 20. LMITATION OF ABSTRACT
,F . I

UNCLASSIFIED 1NLIID NA FIDU

CIVC-FINL-05-01

TABLE OF CONTENTS

1. SCOPE ... 6

1.1 Introduction ... 6

1.2 Purpose ... 7

2. APPLICABLE DOCUMENTS ...

2.1 Government Documents .. 8

2.2 Non-Government Documents .. 8

3. PHASE III PRODUCTS AND METHODS 10

3.1 Examples of Phase III Products .. 10
3.1.1 Test Suite Entities ... 10

3.1.1.1 Test Objective .. 10
3.1.1.2 Test Scenario .. 10
3.1.1.3 Test Case .. 10
3.1.1.4 CAISPragmatics Test .. 11
3.1.1.5 Static Semantics Test .. 11

3.1.2 Test Administrator .. 11
3.1.3 Framework ... 11
3.1.4 Automation and Tools ... 12

3.1.4.1 Test Objective Interface Selection Algorithm 12
3.1.4.1.1 Preparatory Analysis 13
3.1.4.1.2 Test Objective Selection 13

3.1.4.2 Exception/Condition Code Selection Algorithm 14

3.2 Phase III Test Suite Coverage Analysis ... 14

3.3 Software Productivity in Phase II .. 15
3.3.1 Beta Test Suite Prototype ... 17

3.4 Lessons Learned .. 18
3.4.1 Test Objective Implementation .. 18
3.4.2 Stand-alone Test Cases ... 18
3.4.3 Suspect Test Suite Errors .. 19
3.4.4 Multiple Stack Framework ... 19
3.4.5 WBS Granularity ... 19

4. CIVC PHASE IV MAINTENANCE ... 21

4.1 CIVC Phase IV Maintenance Activities .. 21

iii

CIVC-FINL-05-01

5. SUGGESTIONS FOR TECHNOLOGY TRANSFER..........-_

5.1 Technology Transition .. 22
5.1.1 Hypertext Technology .. 22

5.1.1.1 A da 9X .. 23
5.1.1.2 Ada Compiler Evaluation Capability (ACEC) 23

TABLE OF CONTENTS (cont'd)

5.1.2 Test Selection .. 24
5.1.2.1 ACEC Test Selection .. 24
5.1.2.2 PCIS Test Selection .. 25

6. SUMMARY26

APPENDIX A Notes A-1

A .1 A cronym s ... A -1

LIST OF TABLES

Table 3.3-1 Phase I Test Suite Software Productivity Estimates 13

Table 3.3-2 Phase III Test Suite Software Productivity Estimates 13

Table 3.3-3 Phase I Test Administrator Software Productivity Estimates 14

Table 3.3-4 Phase III Test Suite Support Software Productivity Estimates 14

V

CIVC-FINL-05-01

1. SCOPE

1.1 Introduction

The CIVC Final Report provides a summary of the accomplishments and
lessons learned from Phase III of the CIVC project, recommendations if CIVC
technology is reinstated in the future, and suggestions for technology transfer
of validation products to other areas of software development.

The four phases of the CIVC project are summarized as follows:

Phase I produced a validation suite and test
administration tool for CAIS implementation (DoD-1838)
and associated Framework hypertext documentation
product.

Phase II was the maintenance activity for the Phase I
software.

Phase III produced a validation suite for CAIS-A (MIL-
STD-1838A) implementations, a new test administration
tool, and a new Framework hypertext documentation
product.

* Phase IV has been identified as the maintenance activity
for Phase III software, although no current plans exist to
fund Phase IV activities.

CAIS and CAIS-A are military standards specifying common interface sets for
Ada Programming Support Environments (APSEs). The interface sets
(specified as Ada packages) provide environment and device management
services for tools. For a more comprehensive discussion of the interface sets,
see Munck88a and Oberndorf88.

The CIVC Final Report is divided into six sections. Section 1 addresses the
scope of this document. Section 2 lists the applicable documents. Section 3
discusses the products of CIVC Phase III, its development methodology, CIVC
software productivity, and lessons learned. Section 4 addresses CIVC
validation technology in the future. Section 5 offers suggestions for
technology transfer of CIVC technology to relevant programs within the
government. Section 6 summarizes the accomplishments of CIVC Phase III.

4

CIVC-FINL-05-01

1.2 Purpose

The purpose of the CIVC is to develop validation suites for implementations
of the CAIS and CAIS-A . The validation suites will be applied to CAIS
implementations in much the same way the Ada Compiler Validation
Capability (ACVC) test suites are applied to Ada compilers. Validation is
necessary to maintain the effectiveness of the standards.

5

CIVC-FINL-05-01

1. SCOPE

1.1 Introduction

The CIVC Final Report provides a summary of the accomplishments and
lessons learned from Phase III of the CIVC project, recommendations if CIVC
technology is reinstated in the future, and suggestions for technology transfer
of validation products to other areas of software development.

The four phases of the CIVC project are summarized as follows:

Phase I produced a validation suite and test
administration tool for CAIS implementation (DoD-1838)
and associated Framework hypertext documentation
product.

Phase II was the maintenance activity for the Phase I
software.

Phase III produced a validation suite for CAIS-A (MIL-
STD-1838A) implementations, a new test administration
tool, and a new Framework hypertext documentation
product.

Phase IV has been identified as the maintenance activity
for Phase IMl software, although no current plans exist to
fund Phase IV activities.

CAIS and CAIS-A are military standards specifying common interface sets for
Ada Programming Support Environments (APSEs). The interface sets
(specified as Ada packages) provide environment and device management
services for tools. For a more comprehensive discussion of the interface sets,
see Munck88a and Oberndorf88.

The CIVC Final Report is divided into six sections. Section 1 addresses the
scope of this document. Section 2 lists the applicable documents. Section 3
discusses the products of CD/C Phase IM1, its development methodology, CIVC
software productivity, and lessons learned. Section 4 addresses CIVC
validation technology in the future. Section 5 offers suggestions for
technology transfer of CIVC technology to relevant programs within the
government. Section 6 summarizes the accomplishments of CIVC Phase Ill.

6

CIVC-FINL-05-01
1.2 Purpose

The purpose of the CIVC is to develop validation suites for implementations
of the CAIS and CAIS-A . The validation suites will be applied to CAIS
implementations in much the same way the Ada Compiler Validation
Capability (ACVC) test suites are applied to Ada compilers. Validation is
necessary to maintain the effectiveness of the standards.

7

CIVC-FINL-05-01

2. APPLICABLE DOCUMENTS

2.1 Government Documents

[AJPO881 Ada Joint Program Office, Comparison of CAIS-A
and PCTE+, Joint study with Independent European
Programme Group (IEPG TA-13), June 1988.

[AJP0891 Ada Joint Program Office, PCTE+ and CAIS-A
Convergence , Joint feasibility study with
Independent European Programme Group (IEPG
TA-13), November 1989.

[DOD-STD-18381 Common APSE Interface Set (CAIS), 9 October 1986.

[MIL-STD-1815A] Reference Manual for the Ada Programming
Language, 17 February 1983.

[MIL-STD-1838A] Common APSE Interface Set Revision A (CAIS-A),
6 April 1989.

[MIL-STD-847B] Format Requirements for Scientific and Technical
Reports Prepared by or for the Department of
Defense, 7 November 1983.

2.2 Non-Government Documents

[CIVC-IG] CIVC Implementor's Guide for the CAIS
Implementation Validation Capability, CIVC-
FINL-19-02, SofTech, Inc., 15 June 1992.

[CWVC-SPS] Software Product Specification for the CIVC2 CSCI
of the CAIS Implementation Validation Capability
Project, CIVC-FINL-14-05, SofTech, Inc., 15 June
1992.

[CIVC-SRS] Software Requirements Specification for the CIVC2
CSCI of the CAIS Implementation Validation
Capability Project, CIVC-FINL-013-05A, SofTech,
Inc., 1 May 1991.

[CIVC-STR] Software Test Report for the CIVC2 CSCI of the
CAIS Implementation Validation Capability
Project, CIVC-FINL-16-02, SofTech, Inc., 30 June
1992.

8

CIVC-FINL-05-01

[Gutzmann90] Kurt Gutzmann, David Remkes, Jeff Ragsdale,
Software Project Activity Network for Managing
the Development and Testing Process, SofTech
Technical Report H90-1, August 31, 1990.

[HC-REF] HyperCard Reference, Claris Corporation, 1989-1990.

[HC-SLG] HyperCard Scripting Language Guide, Claris
Corporation, 1989-1990.

[Hooi90] Robert Hooi, Mark Denson, A Taxonomic Method
for Interface Set Validation, CIVC Technical Report
(working paper), 1990.

[MAC-REF] Macintosh Reference, Apple Computer, Inc., 1990.

(MAC-SYS] Macintosh System Software User's Guide, Version
6.0, Apple Computer, Inc., 1988.

[Munck88a] Robert Munck, Patricia Oberndorf, Erhard
Ploedereder, Richard Thall, An Overview of DOD-
STD-1838A (proposed), The Common APSE
Interface Set, Revision A, CACM, May 1988.

[Munck88b] Robert Munck, Why Strong Typing was added to
DOD-STD-1838A, The Common APSE Interface Set,
Proceedings of the Sixth Annual Conference on
Ada Technology, March, 1988.

[Oberndorf88]. Patricia Oberndorf, The Common Ada
Programming Support Environment (APSE)
Interface Set (CAIS), IEEE Transactions on Software
Engineering, October 1988, pp. 742-746

[SEVWG89] Tim Lindquist et al, Issues and Strategies for
Evaluation and Validation of CAIS-A
Implementations, SEVWG Working Paper,
Version 2.0, December 1989.

[Woodcock90] Gary Woodcock, Automated Generation of
Hypertext Documents, CIVC Technical Report
(working paper), 1990.

9

CIVC-FINL-05-01

3. PHASE Ill PRODUCTS AND METHODS

3.1 Examples of Phase III Products

The CIVC2 development approach has yielded a set of products and methods
that test conformance of a CAIS-A implementation to the specification as
prescribed by MIL-STD-1838A. Refer to the CIVC-SPS for complete source
code listings of all CIVC2 software products. Refer to CIVC-STR for complete
conformance reports generated by CIVC2 test suite execution.

3.1.1 Test Suite Entities

The CIVC2 test suite comprises test objectives, scenarios for implementing
the test objectives, the test cases which are implemented test objectives, a test
for the package CAISPragmatics, and a test for the static semantics and
completeness of the CAIS-A implementation.

3.1.1.1 Test Objective

A test objective is a mapping to a subprogram interface identified in MIL-
STD-1838A that defines a testable condition, action, or CAIS-A environment
database configuration applicable to a CAIS-A implementation. For each
CAIS-A interface selected as a test objective to implement, a normal and an
exceptional processing mode test objective is created.

3.1.1.2 Test Scenario

A test scenario is a test case design consisting of a defined precondition,
postcondition, and set of required CAIS-A interfaces necessary for
demonstrating a particular aspect of a test objective. Scenario data are
embedded as special comments in the test case source code, and are designated
by the --% prefix. Specifying the precondition and postcondition processing
independently for each test case minimizes the possibility of test case
dependency failures in the test suite.

3.1.1.3 Test Case

The test case is an implementation of a test objective associated with a CAIS-
A interface. The test case implements either a normal processing test
objective or an exceptional processing test objective. Test cases are logically
grouped into test classes based on their similar package dependency
requirements. A normal processing mode test case is an implemented test
objective based on the normal execution of a test case interface in which no
exceptional condition is expected to be raised. An exceptional processing

10

CIVC-FINL-05-01

mode test case is an implemented test objective based on the execution of a
test case interface in which an exceptional condition is expected to be raised.

3.1.1.4 CAISPragmatics Test

Verification of the CAIS Pragmatics Ada package is accomplished by a
demonstration test on the CAIS-A host platform. The CAISPragmaticsTest
evaluates the constraints identified in the package CAISPragmatics, and
reports any errors to the log file PRAGMATICSTEST.RPT. Implementation-
defined and non-implementation-defined constants, in addition to the
exceptions CAPACITYERROR and RESOURCEERROR, are evaluated by
this test. As the CAISPragmaticsTest executable does not link with the
CAIS-A, it may be executed directly at the command line at any time after the
installation procedures have been completed.

3.1.1.5 Static Semantics Test

This test product tests the static semantics and completeness of a CAIS-A
implementation. This test requires inspection of the CIVC2 Ada library to
determine if any of the wrapper units are missing for which test cases are
developed. The wrappers are derived from the published version of the
CAIS-A specification. Failure of any wrapper unit to successfully compile
using the CAIS-A implementation's library specification files indicates a non-
conformant element in the CAIS-A implementation.

3.1.2 Test Administrator

The Test Administrator (TA) provides the means for executing the test suite
comprising all the test classes and associated test cases. The functional
capabilities of the TA are summarized as follows:

"* provides a user interface

"* executes test class programs

"* verifies the minimal set of CAIS-A functionality necessary to
execute a test class

"* collects the test results from each test class and present it in a
single conformance report

"* maintains the selection lists.

When the TA is started, it provides the user with a menu. The user can
choose to modify the selection lists. The selection lists allow the user to
define persistent groups of test classes to execute. After a selection list has
been created, the user can instruct the TA to execute the test classes in the list.
As the test classes are executing, the results can be displayed on the screen. As

11

CIVC-FINL-05-01

each test class executes, the TA concatenates the test results file onto the
conformance report for that selection list. The user may interrupt the
execution of the selection list and processing will be terminated after the
currently executing test class has completed.

3.1.3 Framework

The Framework is a Macintosh-based HyperCard®I stack which allows the
user to obtain information regarding the CIVC2 test suite. The Framework is
not necessary to execute the Test Administrator or the Test Suite. Its primary
function is to provide diagnostic information when a CAIS-A
implementation does not successfully execute a CIVC2 test case. The
Framework is an on-line hypertext-based documentation product that
captures the relationships between MIL-STD-1838A text, Ada package
specifications, test cases, test classes, CAIS Pragmatics test, exceptions, and
keywords. Designed as an information network, the Framework allows the
user intuitive access to CIVC2 data in a non-linear fashion.

3.1.4 Automation and Tools

More than 4000 potential test objectives have been identified through analysis
of the CAIS-A interfaces. However, it is not feasible to implement the large
number of potential test objectives given the cost and schedule constraints of
the CIVC contract. Therefore, the 550 potential test objectives that provide
maximum test benefits have been selected for implementation. To optimize
the benefit from the testing process, two approaches to identifying the test
objectives to be implemented as test cases have been utilized. Software tools
have been developed to automate algorithms that support both the
approaches for selecting objectives. These tools include an automatic test case
code generator that outputs an Ada source code template for each test case, a
program that identifies the test objectives to be implemented as test cases, and
a program that identifies the appropriate exceptional processing conditions
for maximizing coverage of exceptions. A brief discussion of these tools and
the underlying selection algorithm follows. Refer to the CIVC-IG for specific
information on test objective selection.

3.1.4.1 Test Objective Interface Selection Algorithm

The selection process assigns a weight value to each of the CAIS-A interfaces
based on the four pre-determined selection criteria. The specification of the
selection criteria and their relative importance has been jointly established by
the contractor, government representatives, and CAIS-A implementors based
on discussions from numerous Technical Interchange Meetings and CIVC

1 HyperCard is a registered trademark of Apple Computer, Inc.

12

CIVC-FINL-05-01

Working Group (CIVCWG) meetings. The 275 CAIS-A interfaces having the
highest weight values are selected for test case development in both normal
and exceptional processing mode.

3.1.4.1.1 Preparatory Analysis

The selection of test objectives from the list of potential test objectives
requires an analysis of the CAIS-A interfaces as the initial step of the process.
This analysis is based on 1) a set of selection criteria that is applied to all of the
CAIS-A interfaces, and 2) a mapping of the CAIS-A interfaces to their possible
exceptional conditions and exceptions. The selection criteria is based on the
following activities, in order of importance:

* Identify the CAIS-A interfaces having high implementation
complexity. Known as the setIvalue, if an interface is a
member of this set, it receives a value of 2. Non-set members
receive a value of 0.

Classify the CAIS-A interfaces into non-I/O, device-independent
I/O (e.g., Text-JO), and hardware-dependent I/O package sets.
Known as the set_2_value, a non-I/O package interface receives a
value of 2, a device-independent I/O package interface receives a
value of 1, and a hardware-dependent I/O package interface
receives a value of 0.

" Classify the CAIS-A interfaces into active, transitory, and passive
sets. Known as the set_3_value, an active interface receives a
value of 2, a transitory interface receives a value of 1, and a
passive interface receives a value of 0. Refer to the CIVC-IG for
more information on active, transitory, and passive interfaces.

" Identify the closure sets of the CAIS-A packages. Known as the
set_4 value, each interface receives a value that corresponds to
the number of library compilation units included in its context
clause. Refer to the CWC-IG for more information on closure sets.

3.1.4.1.2 Test Objective Selection

The application of the selection criteria will result in a potential test objective
for each CAIS-A interface identified through domain analysis. Associated
with each of the potential test objectives is a score known as its Figure of
Merit (FOM). The Figure of Merit represents the relevancy of a particular
interface based on the selection criteria, and provides the basis for
determining which of the potential test objectives become formal test
objectives. A raw FOM is obtained based on the following equation:

13

CIVC-FINL-05-01

Raw FOM = set 1 value * 4 + set_2_value * 3 + set 3_value * 2
+ (set_4_value/avg. closure).

The raw FOM scores for all of the interfaces are then multiplied by a scaling
factor to achieve a range of FOM scores having 100 as the maximum value.
For example, if the highest raw FOM score is 20, then the scaling factor to be
applied to all the raw FOM scores would be 5.

3.1.4.2 Exception/Condition Code Selection Algorithm

Selection of the exception/condition code for each test case interface's
exceptional processing mode execution is aided by a modified best fit approach
to optimize exception/condition code coverage. A variation of the classic bin
packing algorithm, the steps of this technique are summarized as follows:

"Assign a weight to each interface that is based on the number of
exception/condition code pairs it may raise. The equation used to
assign the weight is expressed as W(I) - (K - Ne/c(I) + 1) / K where
W is the weight of the interface, I is the interface, K is the
maximum weight constant (100.0), and Ne/c is the number of
exception/condition code pairs of the interface. Refer to the CIVC-
IG for more detail on the exception/condition code selection
process.

"* Sort the weighted interfaces in descending order.

"* Assign a mass weight to each condition code pair based on the
weights of all its associated interfaces.

"* Sort the exception condition code pairs by mass in ascending
order.

" For each test objective interface, select the first
exception/condition code pair in the sorted mass list for
exceptional processing implementation, provided that the pair has
not been previously chosen. If the pair is already selected, choose
the next available pair not chosen. Note that most
exception/condition code pairs are not unique to a particular
interface, therefore, some pairs will be implemented more than
once for different interfaces.

3.2 Phase Ill Test Suite Coverage Analysis

The coverage of the Phase III test suite was as follows:

* 273 of the 496 principal CAIS-A interfaces (55%)

14

CIVC-FINL-05-O1
* 108 unique exception/condition code pairs of 231 possible (47%)

* 25 of 37 packages tested (68%)

* Package breakdown:

- Packages having 100% coverage of interfaces:
CAISATTRIBUTE_MONITORMANAGEMENT
CAISDEFINITIONMANAGEMENT
CAISFILENODEMANAGEMENT
CAIS_10_CONNECTION
CAISNODEMANAGEMENT
CAIS PROCESS MANAGEMENT
CAISSTRUCTURALNODE MANAGEMENT

- Packages having >50% coverage of interfaces:
CAISCOMMON_10
CAIS_TRANSLATIONMANAGEMENT
CAISFRAME_10
CAISACCESSCONTROLMANAGEMENT
CAIS_BOOLEANATTRIBUTE
CAISTEXTIO
CAISTRANSACTIONMANAGEMENT
CAISIMPORTEXPORT

- Packages having <50% coverage of interfaces:
CAISATTRIBUTEMANAGEMENT
CAISATTRIBUTEMANAGEMENT.FLOAT
CAISATTRIBUTEMANAGEMENTINTEGER
CAISATTRIBUTE MANAGEMENTENUMERATION
CAISATTRIBUTEMANAGEMENTIDENTIFIER
CAISATTRIBUTE MANAGEMENTSTRING
CAISSEQUENTIAL_10
CAIS_DIRECT_10
CAIS_LISTMANAGEMENT
CAIS_STATUSMANAGEMENT

3.3 Software Productivity in Phase III

Phase m software productivity level realized a significant increase relative to
the Phase I software productivity level. Table 3.3-1 reflects the Phase I
productivity estimates and Table 3.3-2 reflects the Phase III productivity
estimates.

15

CIVC-FINL-05-01

Table 3.3-1 Phase I Test Suite Software Productivity Estimates

Unit of Measure Number produced Productivity per month
based on 24 man months

Test Cases 253 11

Lines of code 14,090 587

Ada statements 7,446 311

comments 4,506 188

Table 3.3-2 Phase III Test Suite Software Productivity Estimates

Unit of Measure Number produced Productivity per month

based on 30 man months

Test Cases 550 18

Lines of code 102,501 3417

Ada statements 25,690 856

comments 35,363 1179

A number of factors contributed to the significant increase in number of lines
of Ada code developed (582%). These items, in order of significance, are as
follows:

"* Automated test case code generator - This Ada development tool
generated Ada source code modules for each of the test case
modules. These modules served as templates which were
completed by the developers.

"* Design/development methodology - Phase III used a 1:1 ratio of
test objectives to test cases and implemented each test objective
into a test case prior to developing scenarios for subsequent test
cases. Phase I did not maintain a 1:1 ratio of these products, and

16

CIVC-FINL-05-01

also did not implement each test objective before developing
additional objectives. Consequently, Phase I resulted in
numerous test objectives developed that never became
implemented as test cases.

A similar increase in productivity was also attained for development of the
test suite support software (test administrator, report generator, etc.). Tables
3.3-3 and 3.3-4 show a comparison of these metrics.

Table 3.3-3 Phase I Test Administrator Software Productivity Estimates

Unit of Measure Number produced Productivity per month
based on 27 man months

Lines of code 25,286 937

Ada Statements 13,402 496

Comments 9,122 338

Table 3.3-4 Phase III Test Suite Support Software Productivity Estimates

Unit of Measure Number produced Productivity per month

based on 30 man months

Lines of code 45,088 1053

Ada Statements 16,189 540

Comments 10,794 360

For the CIVC2 test suite, the ratio of comments to statements is 137%; for the
test suite support software, the ratio is 66%. The scenario comments account
for the significant increase in test suite comments over the test suite support
code comments.

3.3.1 Beta Test Suite Prototype

Subsequent to Phase I and II activities, but prior to the initiation of the CIVC2
development activities, an out-of-scope prototype development task was
undertaken to port the CIVC1 test suite to a new suite targeted to the CAIS-A.
The impetus for this activity was to provide immediate testing support to the
CAIS-A development team at the SofTech San Diego office. Establishing early

17

CIVC-FINL-05-O1
rapport with the developers has resulted in corrections and improvements to
the various CAIS-A implementation releases targeted to the VAX/VMS
platforms. This relationship has continued throughout the CIVC2 program
and has been one of the most significant yet unscheduled benefits to the
CAIS-A program.

The beta development task required 18 man months to implement over a 6
month period. A total of 41 unique interfaces were implemented in both
normal and exceptional processing modes. No specific metrics were gathered
during that activity, but the products have been rolled over into the final
CIVC2 test suite where their metrics are ultimately reflected.

3.4 Lessons Learned

The lessons learned by SofTech during the CIVC project are presented here.
The lessons learned are used to improve the products and productivity for
projects that plan to utilize CIVC technology.

3.4.1 Test Objective Implementation

The CIVC Phase I test suite did not implement test objectives, test scenarios,
and test cases on a 1:1:1 basis. Additionally, no test objectives were
implemented into test cases until all of the test objective scenarios had been
designed for the complete test suite. Due to schedule constraints, this resulted
in a significant surplus of designed test objectives which were never
implemented.

For CIVC Phase III, each test objective had a single design scenario developed
and implemented into a complete test case prior to initiating design of a new
test objective. This resulted in all test objectives being implemented into test
cases.

3.4.2 Stand-alone Test Cases

The CIVC Phase I test suite implemented all the test cases of a test class within
a single compilation unit. While it is logical to group all of the test cases with
similar dependency relationships into the same test class, it magnifies the
problem of side effects and introduces dependency failure. Specifically, the
precondition of a test case was dependent on the post-condition of the
immediately preceding test case. If the preceding test case failed, the
subsequent test cases were not executed because of the unexpected state of the
CAIS-A node structure.

Design of the Phase III test suite eliminated this dependency failure problem
by implementing each test case as a separate compilation unit, with the
precondition and postcondition processing of each test encapsulated within
the module. This design approach reduces the likelihood that a test case will

18

CIVC-FINL-05-01

fail due to preceding test case execution. It is important to note that there is
no guarantee that side effects will not occur based on this design approach.
Section 3.4.3 addresses such issues.

3.4.3 Suspect Test Suite Errors

Errors that appear suspect may be the result of side effects of preceding test
case that had executed with unexpected errors, which often results in
corruption of the CAIS-A predefined node structure. In such instances, a
subsequent modified execution should be run following the restoration of the
frame.dat file (refer to CIVC-OG for file restoration steps). In the following
execution, remove the test class that generates the initial unexpected error
from the selection list. This will ensure that no side effects are caused by its
execution. If the offending error is caused by a test case from the same test
class in which other test cases receive suspect errors, it will be necessary to
stub out the offending test case code.

3.4.4 Multiple Stack Framework

The CIVC Phase III Framework is a large hypertext-based stack that is
approximately eight megabytes in size. As such, it may exhibit slow execution
performance with respect to a few of its functional capabilities (e.g., keyword
searches). For future stack development activities, it might be beneficial to
examine the feasibility of a multiple stack Framework. Such a design might
result in a product having better performance characteristics; however, the
complex links established between objects may preclude the ability to develop
an efficient multiple stack Framework.

3.4.5 WBS Granularity

The work breakdown structure (WBS) is a hierarchical listing of the units of
work in a project. The WBS is used for tracking the amount of effort
expended and for scheduling the units of work. Overly detailed WBSs
introduce an unneeded overhead burden, while insufficiently detailed WBSs
obscure cost elements of interest to the project manager.

A detailed work breakdown structure (WBS) is required for accurate cost
tracking. Accurate historical cost information is the best basis for estimation
of future costs of similar activities. The CIVCWG recommended in June,
1989 that SofTech implement a more detailed cost accounting system to
enable more accurate prediction of Phase III development costs and
productivity.

Development of a more detailed WBS for Phase mI, however, was too specific
in many instances and did not provide a general task identifier for each
product to account for unforeseen activities. Occasionally, task activities
would occur for which there was no identifier. Additionally, many of the

19

CIVC-FINL-05-01

same task activities had different task identifiers due to the position of the
person performing the task (e.g., software engineer versus systems
consultant). For future reference, while it is ideal to provide detailed
visibility into each task, the WBS should not be structured to the level of
identifying the position of the person performing the task. Experience in
Phase III has shown that often the person performing a specified task was not
of the title designated for the activity. Also, staff profiles change throughout
the development cycle, creating further problems identifying appropriate
charge numbers. Finally, a number of general task identifiers should be
created for each discrete development product to accommodate any
unexpected activities related to the work.

20

CIVC-FINL-05-01

4. CIVC PHASE IV MAINTENANCE

4.1 CIVC Phase IV Maintenance Activities

CIVC Phase IV is the designated maintenance activity phase for the CIVC
Phase III product. As the Ada Joint Program Office has decided not to fund
the Phase IV activity, there will be no maintenance support for the Phase III
products (as well as the CAIS-targeted Phase I products). Users of the CIVC
products should be advised that they will be required to support any
maintenance or desired modifications to the products.

21

CIVC-FINL-05-01

5. SUGGESTIONS FOR TECHNOLOGY TRANSFER

5.1 Technology Transition

During the course of the CIVC project, the program developers have
successfully applied the emerging hypertext technology and intelligent test
selection process to produce sophisticated on-line documentation systems and
a test suite that yields optimum test coverage. Being a large scale software
development project, CIVC shares many things in common with other
software development programs. Namely, these items are 1) the ability to
establish traceability between the various phase products, 2) a complete and
easily accessible documentation system, and 3) a test plan that provides
optimal test coverage when exhaustive test coverage is not feasible.
Fortunately, with the advent of hypertext technology, the first two
aforementioned items can readily be accommodated by creating hypertext
stacks specific to the project. Regarding the third item above, designing and
implementing a test plan that provides the user with a high degree of
confidence in large-scale software products can be attained by applying
intelligence to the test selection process.

5.1.1 Hypertext Technology

Hypertext systems are relatively new software products that support the
development of unique information environments. These systems are
developed by using very high level programming commands to store object
information and also information on the relationships between objects in as
much or as little detail is required. Completed hypertext applications are
referred to as stacks. Users can execute, or launch, the stacks to quickly and
easily access products and related information. Relationships between objects
(and sub-objects) are established by creating sticky text links between any two
pieces of data. The sticky text capability allows one to quickly access
information in one object while viewing related information in another
object. For this reason, it is especially useful for navigating through
numerous volumes of data.

Extending the concept of links to another level, hypertext systems could
support user transitions by linking the discrete task activities for each
designer/developer/reviewer/tester (i.e., "What do I need to work with
next?" problem is resolved).

The CIVC program has successfully implemented hypercard project stacks
that assist the user in traceability analysis and documentation review.
Additionally, as part of the CIVC Framework development activities, stack
administration scripts have been created that automatically populate the stack

22

CIVC-FINL-05-01

with object data and automatically regenerates stacks from data files. These
script utilities can be used to support the development of hypercard
framework stacks for the Ada 9X and ACEC programs, as well as other
software development projects having immense documentation and
traceability requirements.

5.1.1.1 Ada 9X

Using hypertext technology to support the Ada 9X program would provide
invaluable assistance to both the developers and users of the new language
specification. The traceability mechanisms inherent in hypertext systems
would allow developers to link every aspect of Ada 9X to all related items in
MIL-STD-1815A, in addition to any other objects, including itself. This
complete traceability would be the most important feature that hypertext
systems could provide to the Ada 9X program. Typical object entities for
ACEC might include:

"* Language Specifications:

1815A Language Reference Manual

Ada 9X Language Reference Manual

"* Related Documentation

- Comparison information on the two language
specifications

MIL-STD 1838A

MIL-STD 2167

"* Vendor Data

- Manufacturers supporting 9X compilers

- Manufacturers supporting 1815A compilers

- ACEC performance results

5.1.1.2 Ada Compiler Evaluation Capability (ACEC)

An ACEC Hypertext Framework product could easily provide on-line access
to ACEC products and related documentation. Object entities for ACEC might
include:

* Test Code / Test Results / Test Analyses

23

CIVC-FINL-05-01

"* Version Description Document

"* ACEC Reader's Guide

"* ACEC User's Guide

"* Structural Data (Test Groups, Scenarios, etc.)

"* Support Documentation:

1815A Language Reference Manual

Compiler Vendor Data

Comparison Information

A hypertext system would be ideally suited for identifying specific ACEC
group tests to apply rather than the complete test suite. For example, one
could easily access Task Group performance tests for assessing pre-emptive
scheduling needs. Other applications for hypertext systems could be an ACEC
training course. An ACEC tutorial could be developed that uses a non-
supervised, user-guided approach to understanding and using the ACEC test
suite. The material content of the tutorial could address all phases
(environment setup, performance testing, assessor testing, and analysis) of
the ACEC. A captive scenario example could be developed that would guide
the user through all aspects of the ACEC test suite

5.1.2 Test Selection

The test selection methodology employed by the CIVC developers has a high
potential for reuse on other software development contracts. Although the
test objective selection algorithm implemented for CIVC2 is specific to CAIS-
A validation activities, its parameters can be modified to accommodate other
programs. Additionally, because the approach supports weighting the
various parameters, future test developers will be able to specify the critically
of the selection factors. Refer to section 3.1.4.1 Test Objective Interface
Selection Algorithm for detailed information on the behavioral
characteristics of the selection process.

Two programs under the auspices of the AJPO that can benefit from the CIVC
developments in test selection domain are the Ada Compiler Evaluation
Capability (ACEC) and the Portable Common Interface Set (PCIS).

5.1.2.1 ACEC Test Selection

The ACEC program is an evaluation suite comparable to Europe's Ada
Evaluation System (AES), in which vendors exercise the suite against their
Ada compiler implementations to assess operational performance

24

CIVC-FINL-05-01

characteristics. Three particular areas where the intelligent test selection
could be applied to ACEC activities are:

"* optimization software can be applied to current ACEC
performance coverage to identify strong and weak areas

"* optimization software can be used to strengthen weak areas in
future phases of ACEC

" user-defined variable weight selection criteria for identifying
prioritized list for future performance/assessor test
implementations.

5.1.2.2 PCIS Test Selection

The PCIS program is based on the proposed merger of two interface standards,
the European Computer Manufacturer's Association (ECMA) Portable
Common Tools Environment (PCTE) and the DoD's CAIS-A. A critical
design driver in the PCIS program is to support -90% of the code developed
for these two independent standards in the future PCIS implementation.
Current thought on the design of PCIS appears to favor a dual-layered PCIS
standard, with ECMA PCTE providing the direct host interface and CAIS-A
providing indirect host interface via the ECMA PCTE. This approach would
allow tools already hosted on PCTE to operate without modification, as they
can bypass the CAIS-A layer. Additionally, tools requiring CAIS-A specific
services could be developed without having to interface to the PCTE.

The CIVC2 test suite could easily be adapted to the CAIS-A layer of a PCIS
implementation. The selection criteria could be modified to emphasize test
coverage in areas deemed most critical. Supplemental test cases could be
developed to support the additional -10% functionality expected by the CAIS-
A layer of PCIS. The PCTE layer of PCIS would also have the need for
validation test activities, although selection methodology would be more
applicable for reuse than the actual test cases for this layer.

25

CIVC-FINL-05-01

6. SUMMARY

Phase III of CIVC produced the following products:

"* Beta Test Suite Prototype

"* Test Suite of 550 test cases

"* CAISPragmatics test

"* Static Semantics test

"* Test Administrator CAIS-A tool

"* Validation suite development methodology

"* Hypertext traceability framework

The coverage of the Phase III test was

* 55% of the principal CAIS-A interfaces

* 47% of the exception/condition code pairs

* 68% of the CAIS-A packages

Lessons learned were presented in the following areas:

"* Test objective development process

"* Test case design

"* Test suite errors

"* Framework stack design

"* Work breakdown structure granularity

The Phase III test suite reached its target of delivering 550 test cases at an
exceptional level of productivity.

26

CIVC-FINL-05-01

APPENDIX A NOTES

A.1 Acronyms

APSE Ada Programming Support Environment

CAIS Common APSE Interface Set

CAIS-A Common APSE Interface Set Revision A

CI Configuration Item

CIVC CAIS Implementation Validation Capability Phase 1

CIVC2 CAIS Implementation Validation Capability Version 2

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DOD Department of Defense

TA Test Administrator

VDD Version Description Document

A-1

